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4.1 Gröbner Bases 51
4.2 Monomial Ideals and Applications 55
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Chapter 1

Basics of Commutative Algebra

Somewhere early in our mathematical career we encountered the equation

f (x, y) = y − x2 = 0,

and learned that the set of points in the plane satisfying this equation (the zero
locus of f ) is a parabola.

The natural generalization of this problem is to find the solutions to a system
of polynomial equations, which is the realm of algebraic geometry. In this
chapter we give a whirlwind tour of the basics of commutative algebra. We
begin by studying the relationship between an ideal I in a polynomial ring R
over a field k, and the set of common zeroes of the polynomials defining I .
This object is called a variety, and denoted V (I ). We prove the Hilbert Basis
Theorem, which shows that every ideal in R is finitely generated. Then we
tackle the task of breaking a variety into simpler constituent pieces; this leads
naturally to the concept of the primary decomposition of an ideal. You may
want to warm up by browsing through the algebra appendix if you are hazy
on the concepts of group, ring, ideal, and module.

Key concepts: Varieties and ideals, Hilbert Basis Theorem, associated primes
and primary decomposition, Nullstellensatz, Zariski topology.

1
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2 Basics of Commutative Algebra

1.1 Ideals and Varieties

Let R = k[x1, . . . , xn] be a polynomial ring over a field k. Affine n-space kn is
the set of n-tuples of elements of k. An affine variety is the common zero lo-
cus of a collection of polynomials fi ∈ R; the affine variety associated to the
set { f1, . . . , fm} is written V ( f1, . . . , fm). For example, V (0) = kn and V (1)
is the empty set. If you have not done this sort of thing before, try working
Exercise A.2.5 in the appendix. Varieties arise quite naturally in many situ-
ations. Linear algebra is one special case (the polynomials are all of degree
one); other examples of applied problems which involve solving polyno-
mial systems range from computer vision and robot motion to understanding
protein placement in cell walls. In fact, this sentence involves varieties: in
PostScript, letters are drawn using Bezier cubics, which are parametric plane
curves.

Exercise 1.1.1. [23] To define Bezier cubics, we need some terminology. A
set S ⊆ Rn is called convex if the line segment between any two points p, q ∈
S lies in S. Prove that if S is a convex subset of R2, and {p0, . . . , pn} ⊂ S,
then any convex combination

∑n
i=0 ti · pi with ti ≥ 0,

∑n
i=0 ti = 1 is in S.

For four points pi = (xi , yi ) in R2 consider the parametric curve given by:

x = x0(1 − t)3 + 3x1t(1 − t)2 + 3x2t2(1 − t) + x3t3

y = y0(1 − t)3 + 3y1t(1 − t)2 + 3y2t2(1 − t) + y3t3

Prove that p0 and p3 lie on the parametric curve, and that the tangent line
at p0 goes through p1 (chain rule flashback!). Given parametric equations,
one might want to find the implicit equations defining an object. These equa-
tions can be found by computing a Gröbner basis, a technique we’ll learn in
Chapter 4. ✸

One important observation is that the variety V ( f1, . . . , fm) depends only
on the ideal I generated by { f1, . . . , fm}. This ideal consists of all linear
combinations of { f1, . . . , fm} with polynomial coefficients; we write this as
I = 〈 f1, . . . , fm〉. The variety V ( f1, . . . , fm) depends only on I because if
p is a common zero of f1, . . . , fm , then p also zeroes out any polynomial
combination

m∑

i=1

gi (x1, . . . , xn) · fi (x1, . . . , xn).

Thus, we can choose a different set of generators for I without altering
V (I ). This is analogous to writing a linear transform with respect to different
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1.1 Ideals and Varieties 3

choices of basis. Consider the ideal I = 〈x2 − y2 − 3, 2x2 + 3y2 − 11〉. Take
a minute and find V (I ) ⊆ R2. You can do this by just drawing a picture, but
you can also do it by renaming x2 and y2 and using Gaussian elimination.
Of course, this won’t work in general. One of our goals will be to find a way
to solve such problems systematically, for example, we might want to find a
generating set for I where we can read off the solutions. For the ideal above,
prove that I = 〈x2 − 4, y2 − 1〉. This is a set of generators from which it is
certainly easy to read off V (I )!

Given an ideal J , we have the set of common zeroes V (J ), which is a
geometric object. Conversely, given S ⊆ kn , we can form the set I (S) of
all polynomials vanishing on S. It is easy to check (do so!) that this set is
actually an ideal. If S = V (J ) for some ideal J , then it is natural to think that
J = I (V (J )), but this is not the case. For example, if J = 〈x2〉 ⊆ k[x], then
I (V (J )) = 〈x〉. If f ∈ J and p ∈ V (J ) then by definition f (p) = 0. Hence
f ∈ I (V (J )), so there is a containment J ⊆ I (V (J )).

Exercise 1.1.2. Show that the process of passing between geometric and
algebraic objects is inclusion reversing:

I1 ⊆ I2 ⇒ V (I2) ⊆ V (I1),

and

S1 ⊆ S2 ⇒ I (S2) ⊆ I (S1).

Use the set S = ∪{(0, i)|i ∈ Z} ⊆ R2 to show that it can happen that S1 � S2

but I (S1) = I (S2). ✸

For a ring element f and ideal I , a natural algebraic question is: “is f ∈
I ?”. If we can answer this question on ideal membership, then the exercise
above shows that there is a geometric consequence: V (I ) ⊆ V ( f ), and we
can restrict our search for points of V (I ) to points on V ( f ). So one way to
begin to get a handle on a variety is to understand the hypersurfaces on which
it sits. Another natural thing to do is to try to break V (I ) up into a bunch of
more manageable parts. What does “manageable” mean? Well, here is a first
candidate:

Definition 1.1.3. A nonempty variety V is irreducible if it is not the union of
two proper subvarieties: V �= V1 ∪ V2 for any varieties Vi with Vi � V .

Theorem 1.1.4. I (V ) is prime iff V is irreducible.
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4 Basics of Commutative Algebra

Proof. First, we need to observe that if X is a variety, say X = V (J ), then
V (I (X )) = X . As Exercise 1.1.2 shows, this need not be the case if we only
assume X is some set. The inclusion X ⊆ V (I (X )) is obvious. By construction
J ⊆ I (X ), so again by Exercise 1.1.2, V (I (X )) ⊆ V (J ) = X . We’re now
ready to prove the theorem. Suppose I (V ) is prime but V is reducible with
V = V1 ∪ V2. Let I1 = I (V1) and I2 = I (V2). So there is a point p ∈ V2

and f ∈ I1 with f (p) �= 0 (if every f ∈ I1 vanishes on every p ∈ V2, then
I1 ⊆ I2, and we’d have a contradiction). By symmetry, there is a g ∈ I2 and
q ∈ V1 with g(q) �= 0. Clearly f g ∈ I (V ), with neither f nor g in I (V ),
contradiction. We leave the other direction for the reader.

As a last warm up before plunging into some proofs, we ask what happens
geometrically when we perform standard operations on ideals.

Exercise 1.1.5. Recall that if I and J are ideals, then the sum I + J = { f +
g| f ∈ I , g ∈ J } is an ideal, as are I · J = 〈 f · g| f ∈ I , g ∈ J 〉 and I ∩ J .
Show that

V (I + J ) = V (I ) ∩ V (J ),

and that

V (I · J ) = V (I ∩ J ) = V (I ) ∪ V (J ). ✸

1.2 Noetherian Rings and the Hilbert Basis Theorem

In the previous section we asked if it was possible to find a “nice” generating
set for an ideal. For example, since k[x] is a principal ideal domain, every
ideal I ⊆ k[x] has a single generator, which we can find by repeated use of the
Euclidean algorithm. So the question of ideal membership is easily solved:
once we have a generator for I , to see if g ∈ I = 〈h〉, we need only check that
h divides g. If we work in rings where ideals can have minimal generating sets
which are infinite, then finding a “nice” generating set or running a division
algorithm is problematic, so we should begin by finding a sensible class of
rings. In this book, ring always means commutative ring with unit.

Definition 1.2.1. A ring is Noetherian if it contains no infinite ascending
chains (infinite proper inclusions) of ideals, i.e. no sequences of the form

I1 � I2 � I3 � · · ·
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1.2 Noetherian Rings and the Hilbert Basis Theorem 5

A module is Noetherian if it contains no infinite ascending chains of sub-
modules. Although this definition seems a bit abstract, it is in fact exactly the
right thing to make all ideals finitely generated.

Lemma 1.2.2. A ring is Noetherian iff every ideal is finitely generated.

Proof. First, suppose every ideal is finitely generated, but that there exists an
infinite ascending chain of ideals:

I1 � I2 � I3 � · · ·
But (check!) J = ⋃∞

i=1 Ii is an ideal. By assumption, J is finitely generated,
say by { f1, . . . , fk}, and each fi ∈ Ili for some li . So if m = max{li } is the
largest index, we have Im−1 � Im = Im+1 = · · · , contradiction. Now sup-
pose that I cannot be finitely generated. By taking a sequence of generators
{ f1, f2, . . .} for I with fi �∈ 〈 f1, f2, . . . fi−1〉, we obtain

〈 f1〉 � 〈 f1, f2〉 � 〈 f1, f2, f3〉 � · · · ,
which is an infinite ascending chain of ideals.

Exercise 1.2.3. Let M be a module. Prove the following are equivalent:

1. M contains no infinite ascending chains of submodules.
2. Every submodule of M is finitely generated.
3. Every nonempty subset � of submodules of M has a maximal element

(� is a partially ordered set under inclusion).

This gives three equivalent conditions for a module to be Noetherian. ✸

Theorem 1.2.4 (Hilbert Basis Theorem). If A is a Noetherian ring, then so
is A[x].

Proof. Let I be an ideal in A[x]. By Lemma 1.2.2 we have to show that I is
finitely generated. The set of lead coefficients of polynomials in I generates an
ideal I ′ of A, which is finitely generated (A is Noetherian), say by g1, . . . , gk .
Now, for each gi there is a polynomial

fi ∈ I, fi = gi x
mi + terms of lower degree in x .

Let m = max{mi }, and let I ′′ be the ideal generated by the fi . Given any
f ∈ I , we can chop it down by the elements of I ′′ until its lead term has
degree less than m. Consider the A-module M generated by {1, x, . . . , xm−1}.
It is finitely generated, hence Noetherian. So the submodule M ∩ I is also
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6 Basics of Commutative Algebra

Noetherian. Take generators h1, . . . , h j , toss them in with the generators of
I ′′, and we’re done.

Exercise 1.2.5. Prove that if A is Noetherian and M is a finitely generated
A-module, then M is Noetherian. Hint: for some n, An surjects onto M . What
would an infinite ascending chain of submodules of M imply? ✸

In a Noetherian ring, no matter how complicated an ideal I appears to be,
there will always be a finite generating set for I . A field k is Noetherian, so
the Hilbert Basis Theorem and induction tell us that the ring k[x1, . . . , xn] is
Noetherian (of course, so is a polynomial ring over Z or any other principal
ideal domain). Thus, our goal of finding a nice generating set for an ideal
does make sense.

1.3 Associated Primes and Primary Decomposition

Throughout this book, we will dwell on the following theme: “To under-
stand a complicated object, break it up into simpler objects”. In this sec-
tion we’ll see how to write an ideal in a Noetherian ring in terms of “nice”
ideals.

Exercise 1.3.1. (Decomposition I)

1. Prove that 〈x2 − 4, y2 − 1〉 can be written as the intersection of four
maximal ideals in R[x, y]. (Hint: what is the corresponding variety?)

2. Prove that 〈x2 − x, xy〉 = 〈x〉 ∩ 〈x − 1, y〉, hence is the intersection
of a prime ideal and a maximal ideal in R[x, y]. ✸

The two ideals in Exercise 1.3.1 are intersections of prime ideals (by Ex-
ercise A.2.6, maximal ideals are prime). By Theorem 1.1.4 we know that if X
is an irreducible variety then I (X ) is prime. Since any variety can be written
as a union of irreducible varieties, it seems natural to hope that any ideal
is an intersection of prime ideals. As 〈x2〉 ⊆ k[x] shows, this hope is vain.
However, in a Noetherian ring, any ideal can be written as a finite intersection
of irreducible ideals (an irreducible decomposition) or as a finite intersection
of primary ideals (a primary decomposition). Warning: don’t confuse an ir-
reducible ideal with an irreducible variety. In fact, it might be good to review
the definitions of irreducible and primary ideal at this point (Exercise A.2.5).

Lemma 1.3.2. In a Noetherian ring R, any ideal is a finite intersection of
irreducible ideals.
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1.3 Associated Primes and Primary Decomposition 7

Proof. Consider the set � consisting of ideals which may not be written as a
finite intersection of irreducibles. Since R is Noetherian, � has a maximal el-
ement I ′. But I ′ is reducible, so we can write I ′ = I1 ∩ I2, and by assumption
I1 and I2 are finite intersections (since they properly contain I ′, and I ′ is a
maximal element of �), a contradiction.

Lemma 1.3.3. In a Noetherian ring R, irreducible ideals are primary.

Proof. Let I be irreducible, and suppose f g ∈ I , with f �∈ I . By passing to
the quotient ring A = R/I , we only need to show that gm = 0, for some m.
There is a chain of ideals in A:

0 ⊆ ann(g) ⊆ ann(g2) ⊆ · · · ,
where

ann(h) = {e ∈ A|eh = 0}.
Because A is Noetherian, there exists an n such that

ann(gn) = ann(gn+1).

Since the zero ideal is irreducible in A and f �= 0, if we can show that
〈gn〉 ∩ 〈 f 〉 = 0, we’ll be done. So suppose a ∈ 〈 f 〉 ∩ 〈gn〉; a ∈ 〈 f 〉 implies
ag = 0. But

a ∈ 〈gn〉 ⇒ a = bgn ⇒ bgn+1 = 0 ⇒ bgn = 0 ⇒ a = 0,

so indeed 〈gn〉 ∩ 〈 f 〉 = 0.

Primary decompositions are generally used more often than irreducible de-
compositions, in fact, some books ignore irreducible decompositions com-
pletely. The treatment here follows that of [3]; it seems reasonable to include
the irreducible decomposition since the proof is so easy! It turns out that pri-
mary ideals are very closely related to prime ideals. First, we need a definition:

Definition 1.3.4. The radical of an ideal I (denoted
√

I ) is the set of all f
such that f n ∈ I for some n ∈ N; I is radical if I = √

I .

Exercise 1.3.5. Prove that if Q is primary, then
√

Q = P is a prime ideal,
and P is the smallest prime ideal containing Q. We say that Q is P-primary.
Show that if Q1 and Q2 are P-primary, so is Q1 ∩ Q2. This is one reason
for preferring primary decomposition to irreducible decomposition: the in-
tersection of two irreducible ideals is obviously not irreducible. For the ideal
I = 〈x2, xy〉, show

√
I = 〈x〉 but I is not primary. ✸
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8 Basics of Commutative Algebra

A primary decomposition I = ⋂n
i=1 Qi is irredundant if for each

j ∈ {1, . . . , n}
⋂

i �= j

Qi �= I

(there are no “extraneous” factors). By Exercise 1.3.5, we may assume that
the radicals Pi of the Qi are distinct; the Pi are called the associated primes
of I . An associated prime Pi which does not properly contain any other as-
sociated prime Pj is called a minimal associated prime. The non-minimal
associated primes are called embedded associated primes. The reason for this
terminology is explained in the following example.

Example 1.3.6. Consider the two ideals

I1 = 〈x2, xy〉 and I2 = 〈x2 − x, xy〉.

Clearly I1 = 〈x2, y〉 ∩ 〈x〉, and 〈x〉, 〈x2, y〉 are primary ideals. So I1 has one
minimal associated prime 〈x〉 and one embedded associated prime 〈x, y〉. By
Exercise 1.1.5, V (I ∩ J ) = V (I ) ∪ V (J ). Thus,

V (I1) = V (x) ∪ V (x2, y) = V (x) ∪ V (x, y).

In the plane, V (x, y) corresponds to the origin, which is “embedded in” the
line V (x). Notice that we can write

〈x〉 ∩ 〈x2, xy, y2〉 = I1 = 〈x2, y〉 ∩ 〈x〉.

Verify that 〈x2, xy, y2〉 is a primary ideal. This shows that the Qi which
appear in a primary decomposition are not unique. Let’s ask the computer
algebra package Macaulay 2 to check our work. Appendix A.3 describes how
to get started with Macaulay 2; you should glance over the appendix (and,
better still, try running the commands) before proceeding.

i1 : R=QQ[x,y]

o1 = R

o1 : PolynomialRing

i2 : intersect(ideal(x),ideal(x^2,x*y,y^2))
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1.3 Associated Primes and Primary Decomposition 9

2
o2 = ideal (x*y, x )

o2 : Ideal of R

i3 : intersect(ideal(x),ideal(x^2,y))

2
o3 = ideal (x*y, x )

o3 : Ideal of R

i4 : o2==o3

o4 = true

In Macaulay 2, the command == tests for equality (of course, in this example
we could see that the two ideals are equal, but sometimes it won’t be so
obvious). In Exercise 1.3.12 you’ll prove that passing from I to

√
I causes

embedded components to disappear.

i5 : radical o2

o5 = ideal x

For the ideal I2 we obtain a primary decomposition

I2 = 〈x〉 ∩ 〈x − 1, y〉,
hence I2 has two minimal associated prime ideals, and the primary compo-
nents are actually prime already, so

√
I 2 = I2.

i6 : primaryDecomposition ideal(x^2-x,x*y)

o6 = {ideal (y, x - 1), ideal x}

o6 : List

i7 : (radical ideal(x^2-x,x*y))==ideal(x^2-x,x*y)

o7 = true
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10 Basics of Commutative Algebra

The zero loci of all the primary components of I1 and I2 are shown below;
the pictures hint that while varieties capture all the geometry of the minimal
primes, they forget about embedded primes. Understanding the entire set
of primary components of an ideal is part of the motivation for studying
schemes [34].

2I1 II1

Why bother worrying about the embedded primes? Well, for one thing,
they carry important information about I . In Chapter 4, we’ll learn how to
define an order on monomials in a polynomial ring, so that we can define
the lead monomial of a polynomial. The set in(I ) of all lead monomials of
elements of I generates an ideal, and will often have embedded primes even
if I does not. So what? Well, the point is that many numerical invariants
are the same for I and for in(I ), but in(I ) is often much easier to compute.
Punchline: embedded primes matter.

Next we consider how to actually find associated primes and a primary
decomposition. A key tool is the operation of ideal quotient:

Definition 1.3.7. Let R be a ring and I, J ideals of R. Then the ideal quotient
I : J = { f ∈ R| f · J ⊆ I }.

As usual, you should take a minute and scrawl down a proof that I : J is
an ideal (it really will fit in the margin!).

Lemma 1.3.8. If Q is a P-primary ideal, and f ∈ R, then

f ∈ Q ⇒ Q : f = R
f �∈ Q ⇒ Q : f is P-primary
f �∈ P ⇒ Q : f = Q

Proof. The first statement is automatic, and for the second, if f g ∈ Q, then
since f �∈ Q we must have gn ∈ Q so g ∈ P;

Q ⊆ (Q : f ) ⊆ P, so
√

Q : f = P,
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1.3 Associated Primes and Primary Decomposition 11

and it is straightforward to show Q : f is P-primary. For the last statement,
if f g ∈ Q, then f n �∈ Q (else f ∈ P) so g ∈ Q and Q : f ⊆ Q.

Exercise 1.3.9. (Distributivity).

1. Show that if a prime ideal P = P1 ∩ P2, then P is one of the Pi .
2. Show that (I1 ∩ I2) : f = (I1 : f ) ∩ (I2 : f ).
3. Show that

√
I1 ∩ I2 = √

I1 ∩ √
I2. ✸

Lemma 1.3.8 and Exercise 1.3.9 show that in a Noetherian ring, the associated
primes of an ideal are independent of the decomposition – in other words,
even though the Qi are not unique, the Pi are! To see this, write

I =
n⋂

i=1

Qi ,

which we can assume is irredundant by the remarks following Exercise 1.3.5.
Now, since the decomposition is irredundant, for any j we can find f j �∈
Q j but which is in all the other Qi , i �= j . By Lemma 1.3.8 and Exercise
1.3.9, I : f j = Q j : f j is Pj -primary. In particular

√
Q j : f j = Pj , which

proves:

Lemma 1.3.10. The associated primes of I are contained in the set
{√I : f | f ∈ R}.

On the other hand, if P is a prime in the set {√I : f | f ∈ R}, then it must
be associated to I (hint: Exercise 1.3.9).

We can also define the associated primes of a module M . In this case,
the set of associated primes Ass(M) consists of primes P such that P is the
annihilator of some m ∈ M .

Exercise 1.3.11. ([28], Proposition 3.4) Let M be an R-module, and S =
{I ⊆ R|I = ann(m), some m ∈ M}. Prove that a maximal element of S is
prime. ✸

By the previous exercise, the union of the associated primes of M consists
precisely of the set of all zero divisors on M . One caution – the associated
primes of the module R/I are usually referred to as the associated primes
of the ideal I . This seems confusing at first, but is reasonable in the follow-
ing context: if R is a domain, then no nonzero element of R has nontrivial
annihilator. In particular, if I ⊆ R a domain, then as a module I has no
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12 Basics of Commutative Algebra

interesting associated primes. For example, let R = k[x, y], and consider the
R-module M = R/I1 with I1 as in Example 1.3.6. The annihilator of x ∈ M
is 〈x, y〉, and the annihilator of y ∈ M is 〈x〉, so {〈x〉, 〈x, y〉} ⊆ Ass(M). Is
this everything?

Exercise 1.3.12. (Decomposition II).

1. Prove that
√

I is the intersection of the minimal primes of I .
2. Find (by hand) a primary decomposition for the radical of 〈y2 + yz,

x2 − xz, x2 − z2〉
3. Find a primary decomposition for 〈xz − y2, xw − yz〉 as follows: First,

observe that when x and y both vanish then both generators of the
ideal vanish, so 〈xz − y2, xw − yz〉 ⊆ 〈x, y〉. Use ideal quotient to
strip off 〈x, y〉. You should find that 〈xz − y2, xw − yz〉 : 〈x, y〉 =
〈xz − y2, xw − yz, z2 − yw〉. It turns out (Deus ex machina!) that
J = 〈xz − y2, xw − yz, z2 − yw〉 is the kernel of the map

R = k[x, y, z, w] −→ k[s3, s2t, st2, t3]

given by

x → s3, y → s2t, z → st2, w → t3.

Since R/J � k[s3, s2t, st2, t3] ⊆ k[s, t] and a subring of a domain is
a domain, we see that J is a prime ideal, and we have found a primary
decomposition 〈xz − y2, xw − yz〉 = J ∩ 〈x, y〉. ✸

1.4 The Nullstellensatz and Zariski Topology

Varieties are geometric objects. Given two geometric objects X and Y , it is
very natural to ask if there is a map f : X → Y . In analysis we might stipulate
that f be continuous or differentiable; the notion of continuity depends on
having a topology. When X and Y are varieties, one reasonable class of maps
to consider are maps which are polynomial (or at least “locally” polynomial).
It turns out that there is a specific topology which gives us the right language
to study these maps. First, some terminology:

Definition 1.4.1 (Topology). A topology on a set X is a collection U of sub-
sets of X which satisfy:

1. ∅ and X are in U .
2. U is closed under finite intersection.
3. U is closed under arbitrary union.
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1.4 The Nullstellensatz and Zariski Topology 13

Members of U are called the open sets of the topology. There is an equiv-
alent formulation using closed sets – a finite union of closed sets is closed, as
is any intersection of closed sets. By Exercise 1.1.5, a finite union of affine
varieties is itself an affine variety, as is any intersection of affine varieties. This
shows that we can define a topology on kn in which the closed sets are affine
varieties. This topology is called the Zariski topology, and for this reason the
terms affine variety and Zariski closed set are used interchangeably. If X is
a variety in kn , then X is endowed with the subspace topology – an open set
in X is the intersection of X with an open set in kn . Even though we may
not always say it, we’ll always have in mind the case where k is algebraically
closed (despite the fact that the computations we make are over Q or a finite
field). In this book, when you see An

k think “kn with Zariski topology”, and
when you see the word “point”, think of a point in the usual topology. If
U ⊆ kn is the complement of the vanishing locus of a polynomial f , then U
is called a distinguished open set, and written U f .

Exercise 1.4.2. Show that the distinguished open sets U f are a basis for the
Zariski topology on An

k : every Zariski open set can be written as a union of
distinguished open sets. ✸

The Zariski topology is quasicompact: any cover of An
k has a finite sub-

cover. To see this, let {Ui }i∈S be a cover of An
k which does not admit a finite sub-

cover. The previous exercise shows that we may suppose the Ui are of the form
U fi . By assumption we can find an infinite sequenceU f1 � (U f1 ∪ U f2 ) � · · · .
Then taking complements of these sets yields an infinite descending chain of
varieties V ( f1) � V ( f1, f2) � · · · , which is impossible since k[x1, . . . , xn]
is Noetherian. A similar argument shows that any subvariety of An

k is quasi-
compact.

Polynomial functions on kn obviously restrict to give polynomial functions
on a variety X ⊆ kn , and any two polynomials which differ by an element of
I (X ) define the same function on X . So polynomial functions on an affine
variety X correspond to elements of the coordinate ring R/I (X ). It will be
useful to have a local description for this; the reason is that later in the book
we shall be constructing objects by patching together Zariski open subsets of
affine varieties.

Definition 1.4.3. Let U be an open subset of an affine variety X ⊆ An
k , k

algebraically closed. A function f is regular at a point p ∈ U if there is a
Zariski open neighborhood V of p in X such that f = g

h on V , with g, h ∈
k[x1, . . . , xn]/I (X ), and h(p) �= 0. A function is regular on an open set U if
it is regular at every point of U.
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A regular map is a map defined by regular functions. Two affine varieties X
and Y are isomorphic if there exist regular maps i : X −→ Y and j : Y −→ X
which compose to give the identity.

Exercise 1.4.4. Prove that affine varieties X and Y are isomorphic iff their
coordinate rings are isomorphic. (Hint: section 5.4 of [23]). ✸

We’ll see shortly that if k is algebraically closed, then the ring of regular
functions on a distinguished open subset U f of an affine variety X is iso-
morphic to k[x1, . . . , xn, y]/〈I (X ), y f − 1〉. To prove this, we need to make
a detour back to algebra and understand better the relation between J and
I (V (J )). In §1, we found that J ⊆ I (V (J )), and saw that this containment
could be proper. From the definition of the radical,

√
J ⊆ I (V (J )). The pre-

cise relation between J and I (V (J )) follows by first answering the following
innocuous question:

When is the variety of an ideal empty?

It is clear that if 1 ∈ I then V (I ) is empty, but notice that over a field which
is not algebraically closed, V (I ) can be empty even if I is a proper ideal (e.g.
〈x2 + 1〉 ⊆ R[x]). However, there is a second beautiful theorem of Hilbert:

Theorem 1.4.5 (Weak Nullstellensatz). If k is algebraically closed and
V (I ) is empty, then 1 ∈ I .

To prove the Nullstellensatz properly requires a fair amount of work and
is done in almost all books (save this one!) on algebraic geometry; there are
nice readable treatments in Chapter 2 of [78] and Chapter 4 of [23], and
[28] offers five (!) different proofs. Let’s use the Nullstellensatz to answer an
earlier question we had:

Theorem 1.4.6 (Strong Nullstellensatz). If k is algebraically closed and
f ∈ I (V (I )) ⊆ k[x1, . . . , xn] = R, then f m ∈ I , for some m. More tersely
put,

√
I = I (V (I )).

Proof. (The “trick of Rabinowitch”). Given I = 〈 f1, . . . , f j 〉 ⊆ R and f ∈
I (V (I )), put I ′ = 〈I, 1 − y · f 〉 ⊆ R[y]. Check that V (I ′) is empty. So by
the weak Nullstellensatz, we can write 1 = ∑

ai · fi + g(1 − y · f ). Now
just plug in y = 1/ f to obtain 1 = ∑

ai (x1, . . . , xn, 1/ f ) · fi , and multiply
by a high enough power of f to clean out the denominators.
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With the Nullstellensatz in hand, we can show that if k is algebraically closed,
then the ring of regular functions on a distinguished open subset X f = U f ∩
X of an irreducible affine variety X ⊆ An

k is isomorphic to k[x1, . . . , xn, y]/
〈I (X ), y f − 1〉. Let g be a regular function on X f . By definition, for each
point p ∈ X f there is a Zariski open neighborhood Up of p with g = h p

kp

on Up, with h p and kp in R/I (X ) and kp nonzero at p. By Exercise 1.4.2
and quasicompactness, we can assume that the cover of X f is actually finite
and given by distinguished open sets X fi = X ∩ U fi , i = 1 . . . j with g = hi

ki

on X fi . The ki cannot simultaneously vanish at any point p ∈ X f , since
p lies in some X fm , and km �= 0 on X fm . So V (k1, . . . , k j ) ∩ X f is empty,
hence V (k1, . . . , k j ) ∩ X ⊆ V ( f ). By the Nullstellensatz, there exist li with
f m = ∑ j

i=1 li ki (the equations defining I (X ) are implicit in this expression,
because the ki are defined modulo I (X )). Since hi

ki
= h j

k j
on X fi ∩ X f j , on the

common intersection of all the X fi we can write

f m · g =
j∑

i=1

li ki
hi

ki
.

By Lemma 1.3.8 and Lemma 1.4.7 (below), the common intersection of the
X fi is Zariski dense (we assumed X irreducible). Thus, the expression above
is actually valid on all of X f , so we can write g as an element of R/I (X )
over f m , as claimed. Setting f = 1 shows that the ring of functions regular
everywhere on a variety X ⊆ An

k is simply R/I (X ). The hypothesis that X
is irreducible can be removed, but the proof is a bit more difficult: see [53],
II.2.2.

For any set S ⊆ An
k , Exercise 1.1.2 shows that V (I (S)) is the smallest

variety containing S. So in the Zariski topology V (I (S)) is the closure of S;
we write S for V (I (S)) and call S the Zariski closure of S. For S ⊆ R2 as
in Exercise 1.1.2, S = V (x). A second nice application of the Nullstellensatz
relates the Zariski closure of a set and the ideal quotient. Lemma 1.3.8 tells us
that ideal quotient can be used to pull apart the irreducible pieces of an ideal.
As an example, compute 〈xy〉 : 〈x〉 and 〈x2, xy〉 : 〈x〉. What you should see
is the following:

xy :

=

= yx

=

x,y=x:xy,x2
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The picture on the left makes perfect sense, but the picture on the right is
meant to make you think. How does it relate to primary decomposition?

Lemma 1.4.7.

V (I ) − V (J ) ⊆ V (I : J ),

and if k is algebraically closed and I is radical, then this is an equality.

Proof. By Exercise 1.1.2, we need to show I : J ⊆ I (V (I ) − V (J )). So let
f ∈ I : J , and take p ∈ V (I ) − V (J ). Since p �∈ V (J ), there is a g ∈ J
with g(p) �= 0. From the definition of ideal quotient, f · g is in I , and so
p ∈ V (I ) means f (p) · g(p) = 0, and we’re over a field, so this shows that
V (I ) − V (J ) ⊆ V (I : J ). For the second part, since k must be algebraically
closed, you can guess that the Nullstellensatz plays a role. Figure it out!

Example 1.4.8. Let S = {p1, . . . , p4} = {(0, 0), (0, 1), (1, 0), (1, 1)} ⊆ A2
k

be a set of four points in the affine plane. Then

I (S) =
4⋂

i=1

I (pi ) = 〈x2 − x, y2 − y〉.

To remove the points lying on the line V (x − y), we need to form I (S) :
〈x − y〉, the result should be the ideal of the two remaining points.

V(x+y-1) V(x-y) V(x-y) V(x+y-1)

(0,1) (1,1)

(0,0) (1,0)

(1,1)

(0,0) (1,0)

(0,1)

− =

i8 : ideal(x^2-x,y^2-y):ideal(x-y)

2
o8 = ideal (x + y - 1, y - y)

o8 : Ideal of R

We’ve been computing radicals, intersections, quotients, and primary de-
compositions using Macaulay 2, with no discussion of the underlying algo-
rithms. Chapter 4 gives an overview of Gröbner basis techniques, which is the


